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The Rankine combined vortex is a simple model possessing only azimuthal
velocity. Unfortunately, without non-azimuthal velocity components there is
no mechanism that can produce a Rankine vortex in the real atmosphere.
Yet, it does manage a surprisingly accurate description of air flow around a
tornado just the same.

The Rankine vortex is often called a Rankine combined vortex for the
reason that it has two separate flow fields. The interior flow field (core)
involves only aazimuthal velocity which increases linearly with radius from
zero along the central axis to a maximum value at a radius (R). Thus this
region rotates like a solid body even though it is fluid. The outer flow (tail)
is also purely azimuthal with maximum velocity at radius R. The velocity
declines inversely with radius from this point outward. Such a flow is called
a potential flow because there is a scalar velocity potential function for it.
The mathematical description of the combined vortex is:

Vθ(r) =
V0r

R
(r < R); and

Vθ(r) =
V0R

r
(r > R);

(1)

where, V0 = vortex strength (azimuthal velocity at core boundary1), r=
radial coordinate, and R = radius of the vortex core; or, alternatively one
might use the stream functions Ψcore = V0r2

2R
and Ψtail = V0RLog(r) where

Vθ = ∂Ψ/∂r. Tail flow being derivable from a scalar potential (Φ) means,

mathematically, that ~V = −∇Φ or Vθ = − ∂Φ
r∂θ

. This, used with the definition

of vorticity, ~ω = ∇ × ~V combined with the vector identity ∇ × ∇ ~A = 0

1Rather than use V0 people often use circulation, Γ, in the combination Γ
2πre

where re

is some effective radius of circulation
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indicates that the tail of the Rankine combined vortex has no vorticity! All
vorticity belongs to the core flow. The central core of the vortex has constant
vorticity throughout.

Even though there is no means of producing such a vortex in the atmo-
sphere, the Rankine vortex describes air flow observed in movies of the Dallas
(2 Apr 1957) Tornado very well at the 1000 foot level.2

Figure 1: Form of azimuthal velocity in a combined Rankine vortex.

A person might reasonably wonder about how to attach a numerical value
to the single parameter (V0) in a description of the combined Rankine vortex.
One way would be to measure the maximum azimuthal winds. Or, a person
could estimate the value of V0 from the central pressure deficit in a tornado.
But since either approach depends on quantities that are difficult to mea-

2At lower levels in this tornado there are important departures from the combined
Rankine description suggestive of Starr’s idea of radially inward transport of momentum.
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sure, to say the least, an indirect estimate comes from equating the convective
atmosphere potential energy (CAPE), a thermodynamic quantity available
on atmospheric soundings, to maximum kinetic energy per unit mass of air,
which is to say 1

2
v2.3 As an example, consider the devastating Spencer, South

Dakota tornado of May 30, 1998. A sounding made at Valley, Nebraska a
few hours prior to the tornado provided a CAPE of about 3400 J/Kg. This
suggests air could achieve a maximum speed of something like 82 m/s by
completely converting CAPE into motion. Damage and doppler radar mea-
surements of the Spencer tornado suggested F4 intensity, and wind speeds of
110 m/s. Thus the estimate derived from CAPE is very reasonable, and there
are good arguments, some based on Starr’s idea, about why wind speeds will
exceed the thermodynamic limit near the ground surface which I will discuss
in the separate page about stability.4

2.1 Rankine vortex stability

Lord Rayleigh in 1916 and other investigators since this time have shown
that an arbitrary azimuthal velocity in an inviscid fluid (ν = 0 or µ = 0) ,
V (r), having no dependence on θ is stable or unstable against axi-symmetric
(no θ dependence) distubances accordingly as the following conditions hold

true. Let a function, Ω(r), equal V (r)
r

, then

If
d2

dr2
(r2Ω)2 > 0 the flow is stable

If
d2

dr2
(r2Ω)2 < 0 the flow is unstable

(2)

The case d2

dr2 (r
2Ω)2 = 0 would appear to be neutral stability. The effect

of viscosity (molecular or eddy) is to stabilize the motion. With a bit of

3While CAPE actually measures the energy available to lift air parcels, a person might
also think of CAPE as being the energy capable of supporting a pressure deficit within
the core of a mesocyclone or a tornado.

4The forward motion of the tornado itself will add to the maximum windspeed on one
flank of the tornado. In the case of the Spencer storm this amounted to an additional
15 m/s
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viscosity taken into account the condition for stability ( d2

dr2 (r
2Ω)2 > 0) still

holds, but the condition d2

dr2 (r
2Ω)2 < 0 no longer guarantees instability.

By substituting the inner core flow for V(r) in the stability criterion, a
person can easily show that the core of the Rankine vortex is stable (see the
next page in this series on stability of radial disturbances). The tail flow
is neutrally stable, however a little viscosity should stabilize it. However,
keep in mind that total viscosity involves the sum of molecular and eddy
viscosity, and in some cases eddy viscosity might become negative, and a
negative viscosity would probably de-stabilize the flow.5

3 The Burgers-Rott vortex

This is an exact solution to the Navier-Stokes Equation, and assumes the
mathematical form

U(r) = −ar

V (r) =
Γ

2πr
(1 − e−

ar
2

2ν )

W (z) = 2az

P (r, z) = P0 + ρ

∫ r

0

ν2

r
dr − ρa2

2
(r2 + 4z2) where;

(3)

U ,V , and W are the r, θ, and z components of velocity, respectively. Γ
is circulation strength of the vortex and a is the strength of suction. P (r, z)
is the distribution of atmospheric pressure. This vortex has a central axis
like the Rankine vortex around which there is an azimuthal flow. However,
unlike the Rankine vortex a Burgers-Rott vortex has radial and vertical flow
as well. Air spirals in toward the axis and then flows upward. Unlike the
Rankine vortex there is partially a mechanism for making a Burgers-Rott
vortex in the atmosphere, as it results from suction at great height above a

5I have no proof of such, but I speculate that a bit of negative eddy viscosity will

alter the stability criterion so that the condition d2

dr2 (r2Ω)2 > 0 will no longer guarantee

stability, but that d2

dr2 (r2Ω)2 < 0 will guarantee instability.
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plane surface. In the atmosphere a thunderstorm driven by intense convec-
tion could provide suction to draw air toward a point on the ground below
and draw the air upward into the cloud. Therefore at first glance a Burgers-
Rott vortex could approximate the air flow beneath the central region of
a large thunderhead. Coupling between the azimuthal and corner flows in-
volves the parameter a, which describes the strength of the suction of the
overlying thunderhead. As the suction becomes greater the azimuthal flow
more nearly approximates the potential flow of the combined Rankine vor-
tex. In fact, the azimuthal velocity distribution approximates the combined
Rankine vortex quite well, and even smooths out the troublesome cusp in
velocity at the interface between the core and tail flows.(see figure 1). As
a model of a real tornado the Burgers-Rott vortex suffers from many defi-
ciencies. One is that it is too symmetric. Notice that there is no value of r
that localizes the vortex. The vertical velocity is only a function of z which
means the vertical velocity is not confined to any region at the surface, but is
the same everywhere. There is no local thunderstorm in other words. Also,
the strength of circulation, Γ, appearing as it does only in the azimuthal
equation, is arbitrary, and uncoupled from the remaining flow in the model.
Another deficiency is that the vertical velocity increases linearly with height
without bound, which in effect places the source of suction at a very great
height (infinity in fact); whereas buoyancy in a convecting atmosphere is dis-
tributed over a height range. Therefore suction in the Burgers-Rott sense
would only apply to the lowest portions of a tornado, where the height to
the LCL6 seems very high and the areal extent of the thunderstorm seems
extremely large in comparison. It would be especially inappropriate to ap-
ply to a mesocyclone or a rotating thunderstorm. Finally, the axial pressure
gradient is ∂P/∂z = −4ρa2z, and increases vertically without bound. Obvi-
ously the pressure gradient must reverse somewhere above–where the winds
eventually diverge.

Let us briefly examine some characteristics of the Burgers-Rott vortex.
First, the azimuthal wind component reaches a maximum value where

1

2π
(
a

ν
e−ar2/2ν − 1 − e−ar2/2ν

r2
) = 0 (4)

Or, near r(a/2ν)
1

2 = 1.12. The accompanying graph shows the form of the

6The lifting condesation level (LVL) acts as the locus of the suction in this case.
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azimuthal component7, and it is plain to see that the form is extremely similar
to the piecewise continuous description of the combined Rankine vortex.
Thus the peak azimuthal velocity defines the boundary of the core, and the
tail region contains momentum but very little vorticity. To get an idea of
what this implies for a value for a, assume a vortex with a radius of 50 m and
an eddy viscosity of 5 m2/s; a then is about 0.004.8 If the peak azimuthal
velocity is about 100 m/s, the circulation Γ is then about 1.7 × 104 m2/s.

Figure 2: Form of azimuthal velocity in a Burgers-Rott vortex.

3.1 Stability of a Burgers-Rott vortex

By substituting the Burgers-Rott flow, V(r), in the Rayleigh stability cri-
terion, one will notice that the entire vortex core is stable against radial
disturbaces of flow because r2Ω(r) = (1 − e−r2

) and the second derivative of
the square of this quantity is > 0 for values of r < 1.12; and < 0 for larger
values of r. (see the next page in this series on stability of radial distur-
bances). The tail flow may or may not be stable, but eddy viscosity should
stablize it as long as the eddy viscosity is not a negative value.9

7Units of the abcissa are (a/2ν)
1

2 and ordinate are Γ(a/ν)
1

2

π2
3

2

.
8Molecular viscosity is 100,000 times smaller than typical eddy viscosity, and as I

pointed out earlier, it makes no sense to apply it to any mechanical discussion herein.
9Refer once again to my earlier footnote about stability and negative viscosity.
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4 The Sullivan vortex

The Sullivan vortex is also an exact solution to Navier-Stokes Equation. It
has some similarity to the Burgers-Rott vortex. There is a one-celled vortex
and a two-celled vortex. I am interested only in the two-celled vortex at this
point.

The two-celled vortex has an inner cell in which air flow descends from
above and flows outward to meet a separate air flow that is converging radi-
ally. Both flows rise at the point of meeting. The Sullivan vortex is probably
the simplest vortex that can describe the flow in an intense tornado with a
central downdraft, and it is the simplest vortex that localizes its updraft to
a particular place–there is a place for the thunderstorm. The mathematical
form of the Sullivan Vortex is:

U(r) = −ar +
6ν

r
(1 − e−

ar
2

2ν )

V (r) =
Γ

2πr

H(ar2

2ν
)

H(∞)

W (z, r) = 2az(1 − 3e−
ar

2

2ν ) where;

P (r, z) = P (r, z)Burgers−Rott −
18ρν2

r2
(1 − e−

ar
2

2ν )2 where;

(5)

As in the Burgers-Rott vortex model, U ,V , and W are the r, θ, and z
components of velocity, respectively. Γ is circulation strength of the vortex,
and a is a strength of suction. ν is a viscosity term, but it is eddy viscosity
which dominates the value of this coefficient, not molecular viscosity. H(x)
is a function defined in terms of integrals; H(x) =

∫ x

0
ef(t)dt and in turn

f(t) = −t + 3
∫ t

0
(1 − e−y)dy

y
. Obviously the ratio H(x)

H(∞)
→ 1 as x → ∞, and

as a result the azimuthal velocity component eventually approaches that of
the potential flow tail of the Rankine vortex.

P (r, z)Burgers−Rott is the distribution of pressure as in the Burgers-Rott
vortex. And, as is plain to see, the difference between the two involves only
a small correction factor. The axial pressure gradient is ∂P/∂z = −4ρza2,

7



and increases vertically without bound. Once again this does not describe
buoyancy well at all.

What is mathematically intriguing about the Sullivan vortex is that it
is defined not in terms of elementary functions, but rather in terms of inte-
grals of such. The integral for f(t) in particular appears to diverge, which
makes it interesting to calculate. Initially one might think that H(x → ∞)
would diverge as it involves the integral

∫
∞

0
(1 − e−y)dy

y
which diverges to-

ward infinity10. However, the divergence is pretty tame so that adding −t
sends it diverging toward minus infinity, and then exponentiating the result
and integrating leads to near zero contribution to H(x) beyond a value of
about x = 10 or so. Thus beyond a value of argument to H(x) of 10 or
so the tail of the Sullivan vortex is essentially that of a Rankine combined
vortex.11 The figure below shows a normalized azimuthal velocity12 being a
smooth function of r. Note in particular that it has a definite slope at r = 0.
Numerous authors over the years, including Sullivan, have drawn a figure
indicating a flat slope at r = 0, and this even lead one researcher to suggest
that azimuthal velocity is negligible within the inner cell. Both Mathematica
and Maple have confirmed this linear limiting behavior of H(x2)/x as x → 0,
which one can also calculate easily by hand.

10Both Mathematica and Maple return a value of Complex Infinity for this integral.
11Note that the argument to H is ar2

2ν which very rapidly grows to the point of H(x) =
Constant. Also, and argument that is proportional to r2 produces lim

r→0
H(r2)/r → r, and

so the zero radius limit of the azimuthal velocity is linear in r.
12I have plotted the function H(ρ2)/ρ in this graph, where ρ2 = ar2

2ν because this
illustrates the form of Vθ adequately without having to specify a and ν.
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Figure 3: Form of azimuthal velocity in a two-celled Sullivan vortex. The
plotted function is H(x2)/x.

Similarly to the Burgers-Rott vortex, the Sullivan vortex places its suction
at a great height, which I have pointed out will limit strict applicability to
the near surface far below the LCL. It also places the vortex at the center of
the updraft, and it is therefore too symmetric to describe the real tornado.

Davies-Jones13 provides a thorough description comparison of both the
Burgers-Rott and Sullivan vortexes. This is generally informative except for
the statement that the Sullivan two-celled vortex may be unstable14 because
its ”vertical vorticity is concentrated in an annular region between the cells.”

The accompanying figure shows the two-celled vortex has little azimuthal
shear at the boundary between the cells, and is much like the Burger-Rott

13Thunderstorm Morphology and Dynamics, Edwin Kessler, Ed., Univ. of Oklahoma
Press, 1981.

14More precisely Barotropically unstable but this is an unimportant point at this time.
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and Rankine vortexes. It has vorticity concentrated in a core, and possesses
a tail with nearly zero vorticity. Compare this to the nearby figure of velocity
observed in a large Texas-sized dust devil.

Figure 4: Radar derived velocity profile of a Texas-sized dustdevil. After
measurements made and reported by Bluestein and Pazmany. The solid line
is azimuthal velocity while the dashed is vertical component of vorticity.

If there is a region of concentrated vorticity within a Sullivan vortex,
it is an azimuthally directed vorticity15 resulting from the shear between
downdraft and updraft within the inner cell. Using the definition of vorticity,
~ω = ∇×~V , I can show that the Sullivan vortex has two vorticity components:

The vertical component is . . . 16

15Closed threads of vorticity around the core of the vortex itself.
16γ is Euler’s gamma here, not circulation.
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ωz =
∂

r∂r
(rVθ(r))

=
Γa

2πνH(∞)
∂H(r)/∂r

but because H(r) =

∫ r

0

ef(t)dt; ∂H(r)/∂r = ef(r)

and so, ωz =
Γa

2πνH(∞)
ef(r)with f(r) = −r + 3(γ − Ei(−r)) (6)

The azimuthal (θ) component is . . .

ωθ = (
∂Vr

∂z
− ∂Vz

∂r
)

= −6a2rz

ν
e−ar2/2ν

(7)

The azimuthal component rises to a peak at r0 = (a/v)−
1

2 and shows
that the core wall is not a locus of great vertical vorticity, but rather one
of great azimuthal vortcity. What is most interesting about this exercize is
to combine the two components into a total vorticity vector ~ωT = ~ωz + ~ωθ

which, because ωθ < 0 everywhere, represents helical vortex threads that
wrap around the columnar tornado core with negative pitch–just like the
suction vorticies often observed in potent tornadoes.

5 Kuo’s vortexes

Kuo’s work is particularly interesting in that it originated in finding what
motions one could expect in a rotating air mass induced to convect. He found
two solutions complete in the sense that he obtains both the mechanical
quantities (velocities for example) and also the thermodynamic quantities.
One is single-celled and the other is two-celled. The one-celled vortex has no
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closed form solution and has to be calculated approximately by numerical
means. The two-celled vortex has a closed form if one can assume that
viscous and thermal eddy diffusion coefficients are equal (i.e. an eddy Prandtl
number of 1). It is . . .

U(R) = −bR(
1

2
− (1 − e−

R
2

4ν )
4ν

R2
))

V (R) =
Γm0√

2R

W (z) = bz(1 − 2e−
R

2

4ν )

(8)

where, b is the square root of a stability factor, and plays the role that
the strength of suction (a) does in the Burgers-Rott and Sullivan vortexes.
This factor has a value of about 0.01 s−1 for moderate instability, ν is eddy
viscosity with a typical value of 5 m2/s. R is a dimensionless radial coordi-
nate equal to r/h, where h is a scale height. m0 =

∫ x

0
ef(t)dt/

∫
∞

0
ef(t)dt17,

f(x) = (2 − x)
∫ x

0
(1 − e−t)dt

t
; and Γ is the circulation of the vortex, which

is of the order of 8000 m2/s in a large tornado. The reader will, no doubt,
notice the similarity of the Sullivan vortex and Kuo’s vortex. Both the ver-
tical motion and inflow depend on the stability factor, while the azimuthal
velocity of the vortex depends on the circulation (Γ) but not on the stability
factor.

Possibly there are other numerical steady-state solutions of the Navier-
Stokes system, but I doubt there is much point in pursuing them. In the
next section I’ll suggest serious shortcomings of steady state solutions.

6 Pertinent observations

All three of the real vortex models above, the models that are solutions of
the Navier-Stokes equation, are steady state. What this means is that they
represent solutions of the Navier-Stokes equation in which any term involving
∂/∂t is gone, and generally this implies a solution that one obtains in the

17Note the similarity to Sullivan’s H(x2)/H(∞).
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limit that t → ∞. With viscosity included, and the solutions possessing
a boundary layer, which the Burgers-Rott, Sullivan, and Kuo vortexes do
include, the Navier-Stokes partial differential equation will exhibit a diffusive
behavior (parabolic PDE form). Thus, the situation of t → ∞, results in the
complete obliteration of any information regarding initial conditions that
lead to the tornado initiation and evolution. I mentioned that all three
solutions apear similar to one another. The parabolic flavor of the Navier-
Stokes equation combined with t → ∞ almost demands this. There is,
in effect no information left regarding the initial mechanical state of the
atmosphere except its circulation (Γ), which is an arbitrary value left to the
discretion of the modeller; and, what seems more pertinent to me, there is no
reason to favor one of these models over another. Kuo fit observed data to
his model and finding a reasonable agreement between the two, pronounced
his model essentially correct. Yet the non-real Rankine combined vortex
fits equally well. I am more inclined to think that the fit between data from
real tornadoes and these models suggests not that the models are correct, but
instead that tornadoes are features in which initial conditions are obliterated,
diffused or convected away, and that only a knowledge of Γ remains.

Some other speculations that I might tackle in the future:

• Since the flow of these models is such that ∂/∂t = 0, t → ∞; how
long must the flow persist in order to reasonably approximate t → ∞?
We have no model solutions involving time evolution to answer this
question.

• Even if we cannot find model solutions with time dependence, can we
use the complete Navier-Stokes equation to argue for explosive growth
of a vortex versus just exponential growth? Explosive growth would
mean that the vortex achieves a steady-state form in a finite time. It
seems obvious to me that real tornadoes behave so.

• Why is the initial value of Γ preserved? Why isn’t it diffused and con-
vected away by the flow as t → ∞? Surely t → ∞ is plenty of time for
diffusion, no matter how small is the value of ν, to destroy all initial
information including Γ. We will never understand this mystery with
the present models because Γ is arbitrary and the azimuthal flow is ef-
fectively uncoupled from the radial flow which is alleged to concentrate
Γ.
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• Might Γ be found as a function of the flow itself, rather than an arbi-
trary number set a priori?

• Can we find model equations in which the tornado is a bootstrapping

feature? That is to say, a feature that generates itself by devouring
vorticity produced in the boundary layer of its own inflow?

I plan to investigate some of these issues, and in successive installments
of this story, I’ll report what I have learned.
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