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Background

   A glacier transports heat both through diffusion and also through its flow. That portion
transported through flow is so substantial that no accurate analysis of  internal
temperature in a glacier is possible without considering it. A highly simplified model of
flow, but one that captures the essence of heat transport nevertheless, is as follows.
   Snow accumulates at the surface of the glacier. Its weight bears upon the snow below it,
and causes a vertical compression or strain of the glacier. At the same time the glacier
moves laterally. At the base of the glacier all vertical strain ceases and the motion is
entirely lateral. A model that describes this motion is the complex velocity potential
ƒ(w)= ½ εw2; where ε is the vertical strain rate of the glacier and w is the complex
variable x+j z. At any location the vertical velocity of material is –z where z is the height
above the bedrock. Using this flow model, the 1-D equation for heat transfer is

1. α∂2T/∂z2+εz∂T/∂z =∂T/∂t

   The first term describes conductive heat transfer, in which α is the thermal diffusivity
of the ice. The second term describes convective heat transport. If strain rate, ε, is large
enough, temperatures in the glacier will reach a steady state very quickly. In this case the
differential equation governing temperature is found by setting the explicit time
dependence equal to zero. Thus,

2. α∂2T/∂z2+εz∂T/∂z=0

Solution of the problem

   Let P= ∂T/∂z, then the differential equation becomes of first order, α∂P/∂z+εzP=0.
There are two distinct ways of looking at boundary conditions. In a truly steady state the
surface temperature of the glacier is constant at a temperature of To. At the base of the
glacier one might specify a constant temperature, a constant gradient, or a mixture of the
two.

   In the case of a constant temperature at the base of the ice the solution is…

3. T(z)= (Tb-To )[1-Erf(z√ε/α)/Erf(h√ε/α)]+To ; where Tb is the constant basal
temperature.

In the case of a constant gradient at the base of the glacier the solution is …



4. T(z)= To+G(√πα/4ε)[Erf(z√ε/α)-Erf(h√ε/α)]; where G is the basal gradient.

Figure 1 shows a comparison between Equation 3, using a value of 5x10-5 for ε, and data
taken in a borehole on the Greenland Ice Sheet (1,2). As the solution shows a stupendous
resemblance to the observed data, one might wonder how long it has taken the Greenland
Ice Sheet to reach this temperature distribution. Without troubling to solve the time
dependent Equation 1, a person can estimate time rate of change through the
characteristic times 1/ε, which measures how long it takes surface material to reach 2/3 of
the way to the base of the glacier, and, h2/α, which describes how long it takes 90% of a
temperature change at a boundary to propagate by diffusion to the same depth. For the
Greenland Ice Sheet the two values are 10,000yr and 50,000yr, respectively, which
emphasizes the importance of convection in reaching a steady temperature rapidly. A
value of 5x10-5 for ε is only about half of what a person would expect for the Greenland
Ice Sheet, indicating that the observed temperatures shown in Figure 1 have not
completely reached steady state.
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Figure 1. Below. A comparison of theoretical and observed temperature in a borehole on
the Greenland Ice Sheet. Small differences between the two are, most likely, vestiges of
climate change at the glacier surface.




